Sustainable synthetic route for γ-Fe2O3/C hybrid as anode material for lithium-ion batteries.

نویسندگان

  • Furong Qin
  • Kai Zhang
  • Liyuan Zhang
  • Jie Li
  • Hai Lu
  • Yanqing Lai
  • Zhian Zhang
  • Yaming Zhou
  • Yiwei Li
  • Jing Fang
چکیده

A facile, high-yield and sustainable method is developed to synthesize iron oxide/C hybrids. Starch is chosen as the carbon source due to its superior gelatinization property and natural abundance, and ferric nitrate is used as the iron salt for the sustainable synthesis. The iron oxide in the final products exists in the γ-Fe2O3 phase. The γ-Fe2O3/C hybrids are used as anode materials for lithium-ion batteries. The batteries exhibit better cyclability as the content of γ-Fe2O3 decreases, but in turn the reversible capacity declines. The γ-Fe2O3/C hybrid with 63.96 wt% of γ-Fe2O3 has an initial discharge capacity of 1149 mA h g(-1) and after the 80(th) cycle the reversible capacity is maintained at over 720 mA h g(-1) at a current density of 0.5 A g(-1). Even when tested at a current density of 5 A g(-1), a substantial discharge capacity of ∼300 mA h g(-1) can be obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries

Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...

متن کامل

Carbon nanotube-wrapped Fe2O3 anode with improved performance for lithium-ion batteries

Metall oxides have been proven to be potential candidates for the anode material of lithium-ion batteries (LIBs) because they offer high theoretical capacities, and are environmentally friendly and widely available. However, the low electronic conductivity and severe irreversible lithium storage have hindered a practical application. Herein, we employed ethanolamine as precursor to prepare Fe2O...

متن کامل

Electrochemical Evaluation of PbO Nanoparticles as Anode for Lithium Ion Batteries (Technical Note)

PbO nanoparticles were synthesized using hydrothermal process. Scanning electron microscopy (SEM) was used in order to investigate of PbO powders. X-ray diffraction (XRD) pattern confirmed β-PbO formation during this process. The crystallite size of the powders was calculated using Scherrer formula about 74.6 nm. Electrochemical evaluation of the PbO nanoparticles as anode for Li-ion batteries ...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

A Nanocrystalline Fe2O3 Film Anode Prepared by Pulsed Laser Deposition for Lithium-Ion Batteries

Nanocrystalline Fe2O3 thin films are deposited directly on the conduct substrates by pulsed laser deposition as anode materials for lithium-ion batteries. We demonstrate the well-designed Fe2O3 film electrodes are capable of excellent high-rate performance (510 mAh g- 1 at high current density of 15,000 mA g- 1) and superior cycling stability (905 mAh g- 1 at 100 mA g- 1 after 200 cycles), whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 44 5  شماره 

صفحات  -

تاریخ انتشار 2015